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Abstract

An improved r-factor algorithm for TVD schemes on structured and unstructured grids within a finite volume method framework is
proposed for numerical approximation to the convective term. The new algorithm is tested by a problem of pure convection with a dou-
ble-step profile in an oblique uniform velocity field. The computational results are then compared with the results of Darwish’s r-factor
algorithm using Superbee and Osher limiters on both structured and unstructured grids. The numerical results show that the new algo-
rithm can mitigate the oscillation behavior efficiently while still maintaining the boundedness of the solutions. When using a deferred
correction technique to handle the non-linear term arising from the high resolution schemes, the proposed algorithm showed a smoother
and faster convergence history on structured grids than Darwish’ r-factor algorithm, while on unstructured grids the presented one is
more accurate with a similar convergence history.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The convective term is seemly simple but hard to deal
with in CFD [1]. The difficulties lie in false diffusion,
non-conservative, overshoot/undershoot and phase error,
etc. [2]. Central schemes work quite well in smooth regions
but witness the undesirable severe oscillations around dis-
continuity. It would seem natural that a numerical scheme
should be consistent with the velocity and direction with
which information propagates throughout the flow field.
Indeed, this is nothing more than obeying the physics of
the flow. First-order schemes such as upwinding approach
have the advantage that a monotone variation is achieved
for the numerical flow-field properties in the vicinity of dis-
continuities; i.e., no oscillations appear in the numerical
solutions around these discontinuities. However, they are
diffusive and tend to smear out the flow-field variables, par-
ticularly in the vicinity of contact surfaces, which is often
unacceptable [3,4]. To mitigate this diffusive effect, some
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high-order schemes such as second-order upwind schemes
(SOU) are developed. Though they work well to diminish
the diffusive character of the solution, oscillations which
do not exist in the first-order schemes appears [5–7]. Then,
to reduce or eliminate this undesirable property, while at
the same time retaining the inherent advantages of an
upwind scheme, some rather mathematically elegant algo-
rithms have been developed over the past decades. These
modern algorithms have introduced such terminology as
total variation diminishing (TVD) schemes [8], flux split-
ting [9], flux limiters [10], Godunov schemes [11], and
approximate Riemann solvers [12], etc. These ideas are
all broadly classified as upwind schemes since they attempt
to properly account for the propagation of information
throughout the flow. This paper will discuss only the
TVD schemes which are high resolution schemes.

A briefly description of present formulation of r-factor
using in TVD schemes will be given firstly in the second
section, then a new r-factor algorithm is proposed based
on Darwish’ r-factor, finally, a test example was illustrate
and some conclusions concerning the improved r-factor
was drawn in the end of the paper.

mailto:liao@msu.edu


Nomenclature

d distance vector
f face of cell
r r-factor
N total number of cells
TV total variation
x; y; z components of Cartesian coordinate system
V velocity

Greek symbols

q density of fluid
U independent variable
W(r) flux limiter

Subscripts

i, i + 1, i + 1/2 index of cell or face
n, n + 1 time step
U, C, D, Ur center of cell

f
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Fig. 1. Advection node stencil.
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2. The present formulations of r-factor in TVD schemes

Harten [7] introduced the following generalization of
Godunov’s monotonicity concept [11] in one dimension:
if the solution of convection equation changes from time
step n to n + 1 such thatZ

oU
ox

����
����dx

� �nþ1

6

Z
oU
ox

����
����dx

� �n

ð1Þ

where TV ¼ ð
R

oU
ox

�� ��dxÞ was denoted as the total variation of
U with x, then the scheme is said to be total variation
diminishing (TVD).

Eq. (1) can be rewritten in discrete form,

XN�1

i¼1

jUiþ1 � Uij
 !nþ1

6

XN�1

i¼1

jUiþ1 � Uij
 !n

ð2Þ

where Ui and Ui+1 denote the x component of the general
dependent variable U estimated at point (i) and point
(i + 1), N is the number of total cells in computational do-
main. For a linear scheme, the TVD property is the same as
monotonicity. For a non-linear scheme, however, one can
maintain the TVD property while achieving higher order
(at least in one dimension) by using non-linear functions
called limiters to bound the solution variables such that
Eq. (2) hold. Since these functions are intended to limit gra-
dients by modifying the flux terms in the difference equa-
tions, they are called, quite naturally, flux limiters, which
are quite widespread used in modern CFD algorithms
[13–16].

The face value Ui+1/2 of cell (i) in a TVD scheme, on the
basis of Roe [17], can be written as the sum of a diffusive
first-order upwind and an anti-diffusive term, shown as
below:

Uiþ1=2 ¼ Ui þ
1

2
Wðriþ1=2ÞðUiþ1 � UiÞ ð3Þ

The anti-diffusive part is multiplied by the flux limiter
function, W(r), which is often a non-linear function of r

(also refer as to r-factor), the upwind ratio of consecutive
differences of the solution, defined as [15] in structured
grids (without loss of generality, assume the velocity at
the face vi+1/2 > 0):

riþ1=2 ¼
Ui � Ui�1

Uiþ1 � Ui
ð4Þ

For instance, the two limiters [10,18] used in this paper
have the forms:

Osher limiter: WðrÞ ¼ maxð0;minð2; rÞÞ.
Superbee limiter:

WðrÞ ¼ maxð0;minð1; 2rÞ;minð2; rÞÞ

However, it is not immediately obvious how to express r

on an unstructured grid. Since the index-based notation
used in structured grids is not suitable for unstructured
grids, the more appropriate notation, shown in Fig. 1 as
an example of two-dimensional unstructured grid is
adopted. Nodes C and D are defined as the upwind and
downwind nodes around face f of cell C, and the virtual
node U is defined as the node of upwind of the node C.

Using this notation, Eq. (3) can be rewritten as
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Uf ¼ UC þ
1

2
WðrfÞðUD � UCÞ ð5Þ

Eq. (5) has been used quite often as the TVD scheme for
unstructured grids [15,19,20]. The r-factor in Eq. (5)
becomes

rf ¼
UC � UU

UD � UC

ð6Þ

where UC, UD and UU represent the values of the nodes
straddling the interface.

Since dUC = 2df (dUC is the vector between the nodes U
and C, df is the vector between the nodes C and face f) on a
uniform one-dimensional grid, Bruner proposed the fol-
lowing r-factor [19]

rf ;Bruner �
2d f � ðrUÞC
UD � UC

ð7Þ

Note that the dependent variable estimated at the face f
of cell C was denoted by

Uf ¼ UC þ d f � ðrUÞC

where ($U)C represents the gradient of U at the center of
cell C.

However, Darwish and Moukalled [20] pointed out that
Bruner’s r-factor is inconsistent and cannot recover TVD
condition while being brought back into one dimension.
In fact, in one-dimensional grid, Eq. (4) becomes

rf 6¼ rf ;Bruner ¼
UD � UU

UD � UC

ð8Þ
Fig. 2. UU estimated by Eq. (10) under conditions of parabolic (a) and exp

f DCU fCU Ur

a b

Fig. 3. Ur and U positions in: (a) uniform
Then the so-called exact r-factor formulation was pro-
posed by Darwish and Moukalled [20]:

rf ¼
ðUD � UUÞ � ðUD � UCÞ

UD � UC

ð9Þ

It was assumed by the authors that

ðUD � UUÞ ¼ 2ðrUÞC � dCD ð10Þ

where dCD is the vector between the nodes C and D. Node
U is chosen such that it lies along the line joining nodes D
and C with C at the center of the UD segment.

Substituting Eq. (10) into Eq. (9), they gave the r-factor
as below

rf ¼
2ðrUÞC � dCD

UD � UC

� 1 ð11Þ

It is obvious that UU in Darwish’s r-factor is extrapo-
lated by node ‘D’ and the nodal gradient at node C. So
the key point in Darwish’s r-factor is how reasonable it is
to estimate UU by Eq. (10). If the parabolic distribution
of U along cell U, C and D in one-dimensional grid is
assumed as shown in Fig. 2a, UU can be estimated exactly
by Eq. (10), otherwise, for instance, when exponential dis-
tribution is encountered (see Fig. 2b), which is true and
encountered very common in case with discontinuity such
as double-step convection to be illustrated in the next sec-
tion, Eq. (10) will run into bad even erroneous estimation
for UU.

From the view point of deferred correction technique,
which is quite often employed in high resolution schemes
onential (b) distributions along adjacent nodes in one dimension grid.

D Ur f DCU

dUC=dCD

c

grids and (b, c) non-uniform grids.
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to approximate convective problems and PDE with non-
linear source/sink terms, the idea of using the real UU

directly in Eq. (6) instead of its approximation like Eq.
(10) was proposed, since every nodal value has been given
before the new iteration step was proceeded in the deferred
correction method. The next section will show the deriva-
tion process of the new r-factor algorithm presented in this
paper.
Fig. 4. Computational domain and boundary conditions.
3. A new r-factor algorithm

The original form of r-factor in unstructured grids sug-
gested by Bruner and Darwish can be expressed by Eq. (6).

If the gradient of node U, instead of node C, is used to
estimate UU in Eq. (6), a new scheme which includes more
upwind information, can be developed:

UU ¼ UUr þ dUUr � ðrUÞUr
ð12Þ

Substituting Eq. (12) into Eq. (6), gives

rf ¼
UC � ðUUr þ dUUr � ðrUÞUr

Þ
UD � UC

ð13Þ

It is just the new r-factor algorithm proposed in this
paper, can be also written in the similar form to Eq. (11):

rf ¼ �
dUUr � ðrUÞUr

UD � UC

þ UC � UUr

UD � UC

ð14Þ

where Ur is the cell center which contains the virtual node
U, ðrUÞUr

represents the gradient of Ur, dUrU stands for
the vector between nodes Ur and node U (see Fig. 1).

Normally, Ur does not always coincide with U (see
Fig. 3b and c). This scheme causes that more upwind infor-
mation are used. Eq. (13) will be reduced to Eq. (4) in a
uniform grid system, in which U and Ur are the same point
(see Fig. 3a).

On the other hand, as mentioned above, when the distri-
bution of UU, UC, Uf and UD does not fit in with parabolic
curve (see Fig. 2b), Eq. (11) will not but Eq. (13) can work
correctly.

Eqs. (11) and (13) have the similar structure as shown in
Eq. (14) and both need to calculate a nodal gradient. But
the latter has to do the work concerning the search of Ur

given dUUr (see Fig. 1) which is implemented easily but
may cost a little extra time over Darwish’s r-factor; this will
be showed in the next section.
4. Numerical experiments

The test case is illustrated in Fig. 4, consisting of pure
convection of a transverse double-step profile imposed at
the inflow boundaries of a cubic domain (1 � 0.25 � 1)
with an oblique uniform velocity field v = (1, 1, 0).

The governing conservation equation and boundary
conditions for the problem are given as:
r � ðqvUÞ ¼ 0

U ¼
1 at face: ð1Þ OHIDðX ¼ 0; 0 6 Z 6 0:3Þ
0 at face: ð1Þ HCGIðX ¼ 0; 0:3 6 Z 6 1Þ;

ð2Þ ODEAðZ ¼ 0Þ

8><
>:

oU
on ¼ 0 at face:

ð1Þ OABCðY ¼ 0Þ;
ð2Þ DGFEðY ¼ 0:25Þ;
ð3Þ AEFBðX ¼ 1:0Þ;
ð4Þ CBFGðZ ¼ 1Þ

8>>><
>>>:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
where U is the dependent variable.

The simulations by using Darwish’s and new r-factors
are carried out with the same deferred correction technique.
Two 3D mesh systems were used. One is structured consist-
ing of 2000 cells, and the other is unstructured consisting of
7318 cells, illustrated in Figs. 5a and 7a, respectively. Both
algorithms need to compute a nodal gradient, so the same
method to approximate the nodal gradient, i.e. the least
square method, was adopted in this paper.

On the structured grid, the results obtained from
upwind, TVD schemes using Superbee and Osher limiters
estimated r-factor by Eqs. (11) and (13) are shown in Figs.
5–7.

It is clear that on structured grids the result of upwind-
ing is seriously diffusive (Fig. 5b). When a TVD scheme
was used, which is implemented by the deferred correction
technique, the false diffusion was controlled in much degree
(Fig. 5c and d) compared with upwinding. Superbee and
Osher schemes using the new r-factor algorithm yield better
results than using that of Eq. (11), because the latter suffers
an oscillation-like pattern near the discontinuous regions
(see the regions labeled A�D of Fig. 5c), which can be fur-
ther manifested in Figs. 6 and 7. Besides, the former has a
smoother and faster convergence pattern than the latter as
shown in Fig. 8.

The computed results on unstructured grids using the
upwind and Superbee schemes implemented using Eqs.
(11) and (13) are depicted in Fig. 9. From the figures, they
are shown similar to those in structured grids. However,
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Fig. 5. Comparisons of U colour maps at y = 0.125 via different r-factors implemented on structured grids: (a) grid used, (b) upwinding, (c) Superbee
scheme using Eq. (11) and (d) Superbee scheme using Eq. (13). (For interpretation of the references in colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. Comparison of U profiles at z = 0.8, y = 0.25 via different r-factors
implemented on structured grids (section I-I).

Fig. 7. Comparison of oscillation-like undershoot via different r-factors
implemented on structured grids (section II-II).
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Fig. 8. Comparison of iteration history via different r-factors implemented
on structured grids.
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both the two r-factor algorithms gave rise to undershoot
around the discontinuity, yet the proposed one produced
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Fig. 9. Comparisons of U profiles at y = 0.125 via different r-factors implemen
Darwish’s r-factor and (d) Superbee using the new r-factor.
less which can be seen in the regions labeled A�C of Figs.
9c and d either using Superbee or Osher scheme. It can be
seen from Figs. 9b and 5b that dissipation of upwinding
has been reduced somewhat due to the grid was refined.
In fact, when the grid becomes denser and denser, the dif-
ferences between the two algorithms are less and less. Their
convergence processes when applying the deferred correc-
tion technique are shown in Fig. 10. From that, it is evident
that both r-factor algorithms give almost the same conver-
gence behavior.

On unstructured grids, note that both the two r-factor
algorithms suffer oscillations near the discontinuous
regions, though they are all minor (see Figs. 11 and 12).
This may be attributed to the following reasons: (1) the
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Fig. 10. Comparison of iteration history by using deferred correction
technique via different r-factors implemented on unstructured grids.

Fig. 11. Comparison of U profiles at z = 0.8, y = 0 via different r-factors
implemented on unstructured grids (section I-I).

Fig. 12. Comparison of oscillation and undershoot via different r-factors
on unstructured grids (section II-II).

Table 1
Comparison of running time via different r-factors

Case Grid system Allowed error CPU time (s)

Type Cells Eq. (11) Eq. (13)

1 Structured 2000 10�6 1861 2241
2 Unstructured 7318 10�6 18,540 19,474
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TV definition cannot be directly extended to 3D dimen-
sional unstructured gird and (2) the gradient formulation
used above does not limit the oscillations. In fact, the lim-
iter have great influence on the scheme and the relation
between flux limiter and r-factor may not be always follow
the Sweby’s r–W diagram, which has great influence on the
schemes and simulation results [21]. The details, which are
beyond the scope of the paper, can be found in Ref. [22].
Nevertheless, the same gradient formulation, same grid sys-
tem and same deferred correction technique were adopted,
in terms of the results, conclusion can be drawn that the
new r-factor formulation presented in this paper is more
reasonable and accurate than Eq. (11).

Besides, to confirm the efficiency of the new r-factor
algorithm, comparison of the computational time of Dar-
wish’s and the new r-factor algorithms was conducted
under the same condition with Superbee limiter. The results
are listed in Table 1. It indicates that although the extra
work concerning the search of Ur as mentioned above is
required, the time consumed of the two algorithms is
almost the same due to the faster convergence history of
the new r-factor algorithm, and the latter is a little more
than the former.

5. Conclusion

A new r-factor algorithm used in flux limiter function
when TVD schemes are applied was proposed in this paper.
The new algorithm has been proved that it shows better
behavior over Darwish’s r-factor formulation in terms of
accuracy and convergence history: (1) On structured grids,
the former has almost no while the latter has obvious oscil-
lations at the sharp gradient position, and the former has a
smoother and faster convergence history. (2) On unstruc-
tured grids, the former is more accurate than the latter
and has a similar convergence history and CPU time to
the latter. (3) Both in structured and unstructured grids,
the new r-factor algorithm shows minor oscillations, even
if the grids become denser. It is also pointed out in this
paper that the original TVD definition in uniform and
one-dimensional grids system may not directly be extended
to multidimensional and unstructured one, though it works
well in many problems. In light of the definition of TVD
schemes, any numerical scheme that gives rise to oscilla-
tions does not satisfy the TVD conditions. So it is need
future study on multidimensional and unstructured grids
when intent to apply TVD schemes.
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